Article ID Journal Published Year Pages File Type
9917681 European Journal of Pharmaceutical Sciences 2005 6 Pages PDF
Abstract
The tensile strength of tablets of single-component powders, such as microcrystalline cellulose (MCC), hydroxypropylmethyl cellulose (HPMC) and starch, and binary mixtures of these powder were measured at various relative densities. It was found that the tensile strength of tablets of powder blends was primarily dependent upon relative density but was independent of the tablet dimensions and compaction kinematics. It was found that the logarithm of tensile strength was proportional to the relative density. A simple model, based upon Ryshkewitch-Duckworth equation that was originally proposed for porous materials, has been developed in order to predict the relationship between the tensile strength and relative density of binary tablets based on the properties of the constituent single-component powders. The validity of the model has been verified with experimental results for various binary mixtures. It has demonstrated that the proposed model can well predict the tensile strength of binary mixtures based upon the properties of single-component powders, such as true density, and the concentrations.
Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Drug Discovery
Authors
, , , , ,