Article ID Journal Published Year Pages File Type
9917701 European Journal of Pharmaceutical Sciences 2005 10 Pages PDF
Abstract
The aim of the present study was to improve the synthetic pathway of bioreversible dipeptide derivatives as well as evaluate the potential of using l-Glu-Sar as a pro-moiety for delivering three newly synthesised nucleoside and pyrimidine l-Glu-Sar derivatives. l-Glu(trans-2-thymine-1-yl-tetrahydrofuran-3-yl ester)-Sar (I), l-Glu(thymine-1-yl-methyl ester)-Sar (II) and l-Glu(acyclothymidine)-Sar (III) were synthesised and in vitro stability was studied in various aqueous and biological media. Affinity to and translocation via hPEPT1 was investigated in mature Caco-2 cell monolayers, grown on permeable supports. Affinity was estimated in a competition assay, using [14C] labelled Gly-Sar (glycylsarcosine). Translocation was measured as pHi-changes induced by the substrates using the fluorescent probe BCECF and an epifluorescence microscope setup. All dipeptide derivatives released the model drugs quantitatively by specific base-catalysed hydrolysis at pH > 6.0. II was labile in aqueous buffer solution, whereas I and III showed appropriate stability for oral administration. In 10% porcine intestinal homogenate, the half-lives of the dipeptide derivatives indicated limited enzyme catalyzed degradation. All compounds showed good affinity to hPEPT1, but the Compounds I and III showed not to be translocated by hPEPT1. The translocation of the l-Glu-Sar derivative of acyclovir, l-Glu(acyclovir)-Sar was also investigated and showed not to take place. Consequently, l-Glu-Sar seems to be a poor pro-moiety for hPEPT1-mediated transport.
Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Drug Discovery
Authors
, , , , , ,