Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9918680 | International Journal of Pharmaceutics | 2005 | 8 Pages |
Abstract
The adsorption of two model proteins, catalase and lysozyme, to phospholipid monolayers spread at the air-water interface has been studied using a combined surface pressure-interfacial shear rheology technique. Monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DPPG) and DPPC:DPPG (7:3) were spread on a phosphate buffer air-water interface at pH 7.4. Protein solutions were introduced to the subphase and the resultant changes in surface pressure and interfacial storage and loss moduli were recorded with time. The results show that catalase readily adsorbs to all the phospholipid monolayers investigated, inducing a transition from liquid-like to gel-like rheological behaviour in the process. The changes in surface rheology as a result of the adsorption of catalase increase in the order DPPCÂ <Â DPPC:DPPGÂ <Â DPPG. Lysozyme behaves in a similar manner beneath a DPPG monolayer, but shows no measurable differences when injected beneath DPPC or the DPPC:DPPG (7:3) mixed monolayer. It is proposed that DPPG monolayers are more susceptible to penetration by adsorbing protein molecules. The interaction between DPPG and lysozyme is further enhanced due to electrostatic interactions between the negatively charged DPPG and the positively charged lysozyme.
Keywords
Related Topics
Health Sciences
Pharmacology, Toxicology and Pharmaceutical Science
Pharmaceutical Science
Authors
Simon A. Roberts, Ian W. Kellaway, Kevin M.G. Taylor, Brian Warburton, Kevin Peters,