Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
997672 | International Journal of Forecasting | 2010 | 22 Pages |
Abstract
A description of computationally efficient methods for the Bayesian analysis of Student-tt seemingly unrelated regression (SUR) models with unknown degrees of freedom is given. The method combines a direct Monte Carlo (DMC) approach with an importance sampling procedure to calculate Bayesian estimation and prediction results using a diffuse prior. This approach is employed to compute Bayesian posterior densities for the parameters, as well as predictive densities for future values of variables and the associated moments, intervals and other quantities that are useful to both forecasters and others. The results obtained using our approach are compared to those yielded by the use of DMC for a standard normal SUR model.
Related Topics
Social Sciences and Humanities
Business, Management and Accounting
Business and International Management
Authors
Arnold Zellner, Tomohiro Ando,