Article ID Journal Published Year Pages File Type
998483 International Journal of Forecasting 2007 15 Pages PDF
Abstract

This paper applies a large data set, consisting of 167 monthly time series for the UK, both economic and financial, to simulate out-of-sample predictions of industrial production, inflation, 3-month Treasury Bills, and other variables. Fifteen dynamic factor models that allow forecasting based on large panels of time series are considered. The performances of these factor models are then compared to the following competing models: a simple univariate autoregressive, a vector autoregressive, a leading indicator, and a Phillips curve models. The results show that the best dynamic factor models outperform the competing models in forecasting at 6-, 12-, and 24-month horizons. Thus, the financial markets may have predictive power for the economic activity. This can be a useful tool for central banks and financial institutions, which may use the factor models to construct leading indicators of the economic conditions. In addition, researchers can see a strategic application of factor models.

Related Topics
Social Sciences and Humanities Business, Management and Accounting Business and International Management
Authors
,