Article ID Journal Published Year Pages File Type
998598 International Journal of Forecasting 2006 17 Pages PDF
Abstract

Recent literature on nonlinear models has shown genetic programming to be a potential tool for forecasters. A special type of genetically programmed model, namely polynomial neural networks, is addressed. Their outputs are polynomials and, as such, they are open boxes that are amenable to comprehension, analysis, and interpretation.This paper presents a polynomial neural network forecasting system, PGP, which has three innovative features: polynomial block reformulation, local ridge regression for weight estimation, and regularized weight subset selection for pruning that uses a least absolute shrinkage and selection operator. The relative performance of this system to other established forecasting procedures is the focus of this research and is illustrated by three empirical studies. Overall, the results are very promising and indicate areas for further research.

Related Topics
Social Sciences and Humanities Business, Management and Accounting Business and International Management
Authors
, ,