Article ID Journal Published Year Pages File Type
10151136 Neurocomputing 2018 33 Pages PDF
Abstract
Decomposition methods play an important role in solving large-scale quadratic programming (QP) problems arising from support vector machines (SVMs). In this paper, we study convergence of general decomposition methods for SVMs. We prove that, under a mild condition on the working set selection, a decomposition algorithm stops within a finite number of iterations after reaching a solution of the QP problem satisfying a relaxed Karush-Kuhn-Tucker (KKT) condition which has been often used so far. Further, it is shown that the working set selection used in the implementation of SVMlight satisfies the condition given in this paper, so SVMlight has the finite termination property without the stronger assumption than the positive-semi-definiteness on the Hessian matrix of the objection function.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,