Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10223718 | Journal of Theoretical Biology | 2018 | 34 Pages |
Abstract
In this work, we analyze a mathematical model we introduced previously for the dynamics of multiple myeloma and the immune system. We focus on four main aspects: (1) obtaining and justifying ranges and values for all parameters in the model; (2) determining a subset of parameters to which the model is most sensitive; (3) determining which parameters in this subset can be uniquely estimated given certain types of data; and (4) exploring the model numerically. Using global sensitivity analysis techniques, we found that the model is most sensitive to certain growth, loss, and efficacy parameters. This analysis provides the foundation for a future application of the model: prediction of optimal combination regimens in patients with multiple myeloma.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Agricultural and Biological Sciences (General)
Authors
Jill Gallaher, Kamila Larripa, Marissa Renardy, Blerta Shtylla, Nessy Tania, Diana White, Karen Wood, Li Zhu, Chaitali Passey, Michael Robbins, Natalie Bezman, Suresh Shelat, Hearn Jay Cho, Helen Moore,