Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10336867 | Graphical Models | 2005 | 47 Pages |
Abstract
The notion of ε-sample, introduced by Amenta and Bern, has proven to be a key concept in the theory of sampled surfaces. Of particular interest is the fact that, if E is an ε-sample of a C2-continuous surface S for a sufficiently small ε, then the Delaunay triangulation of E restricted to S is a good approximation of S, both in a topological and in a geometric sense. Hence, if one can construct an ε-sample, one also gets a good approximation of the surface. Moreover, correct reconstruction is ensured by various algorithms. In this paper, we introduce the notion of loose ε-sample. We show that the set of loose ε-samples contains and is asymptotically identical to the set of ε-samples. The main advantage of loose ε-samples over ε-samples is that they are easier to check and to construct. We also present a simple algorithm that constructs provably good surface samples and meshes. Given a C2-continuous surface S without boundary, the algorithm generates a sparse ε-sample E and at the same time a triangulated surface Del|S (E). The triangulated surface has the same topological type as S, is close to S for the Hausdorff distance and can provide good approximations of normals, areas and curvatures. A notable feature of the algorithm is that the surface needs only to be known through an oracle that, given a line segment, detects whether the segment intersects the surface and, in the affirmative, returns the intersection points. This makes the algorithm useful in a wide variety of contexts and for a large class of surfaces.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Graphics and Computer-Aided Design
Authors
Jean-Daniel Boissonnat, Steve Oudot,