Article ID Journal Published Year Pages File Type
10349441 Computer Methods in Applied Mechanics and Engineering 2019 27 Pages PDF
Abstract
We propose and analyze an efficient ensemble algorithm for fast computation of multiple realizations of the stochastic Stokes-Darcy model with a random hydraulic conductivity tensor. The algorithm results in a common coefficient matrix for all realizations at each time step making solving the linear systems much less expensive while maintaining comparable accuracy to traditional methods that compute each realization separately. Moreover, it decouples the Stokes-Darcy system into two smaller sub-physics problems, which reduces the size of the linear systems and allows parallel computation of the two sub-physics problems. We prove the ensemble method is long time stable and first-order in time convergent under a time-step condition and two parameter conditions. Numerical examples are presented to support the theoretical results and illustrate the application of the algorithm.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,