Article ID Journal Published Year Pages File Type
10356203 Journal of Computational Physics 2012 20 Pages PDF
Abstract
We give a systematic method for discretizing Hamiltonian partial differential equations (PDEs) with constant symplectic structure, while preserving their energy exactly. The same method, applied to PDEs with constant dissipative structure, also preserves the correct monotonic decrease of energy. The method is illustrated by many examples. In the Hamiltonian case these include: the sine-Gordon, Korteweg-de Vries, nonlinear Schrödinger, (linear) time-dependent Schrödinger, and Maxwell equations. In the dissipative case the examples are: the Allen-Cahn, Cahn-Hilliard, Ginzburg-Landau, and heat equations.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , , , ,