Article ID Journal Published Year Pages File Type
10357954 Journal of Computational Physics 2005 19 Pages PDF
Abstract
Several rules for redistributing geometric edge-coefficient obtained for grids of linear elements derived from the subdivision of rectangles, cubes or prisms are presented. By redistributing the geometric edge-coefficient, no work is carried out on approximately half of all the edges of such grids. The redistribution rule for triangles obtained from rectangles is generalized to arbitrary situations in 3-D, and implemented in a typical 3-D edge-based flow solver. The results indicate that without degradation of accuracy, CPU requirements can be cut considerably for typical large-scale grids. This allows a seamless integration of unstructured grids near boundaries with efficient Cartesian grids in the core regions of the domain.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,