Article ID Journal Published Year Pages File Type
10360762 Information Fusion 2016 11 Pages PDF
Abstract
This paper develops an analytical method of truncating inequality constrained Gaussian distributed variables where the constraints are themselves described by Gaussian distributions. Existing truncation methods either assume hard constraints, or use numerical methods to handle uncertain constraints. The proposed approach introduces moment-based Gaussian approximations of the truncated distribution. This method can be applied to numerous problems, with the motivating problem being Kalman filtering with uncertain constraints. In a simulation example, the developed method is shown to outperform unconstrained Kalman filtering by over 40% and hard-constrained Kalman filtering by over 17%.
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , ,