Article ID Journal Published Year Pages File Type
10361229 Pattern Recognition 2005 4 Pages PDF
Abstract
We propose an uncorrelated heteroscedastic LDA (UHLDA) technique, which extends the uncorrelated LDA (ULDA) technique by integrating the weighted pairwise Chernoff criterion. The UHLDA can extract discriminatory information present in both the differences between per class means and the differences between per class covariance matrices. Meanwhile, the extracted feature components are statistically uncorrelated the maximum number of which exceeds the limitation of the ULDA. Experimental results demonstrate the promising performance of our proposed technique compared with the ULDA.
Keywords
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , ,