Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10364460 | Microelectronics Journal | 2011 | 7 Pages |
Abstract
This paper focuses on the design of a 1-bit full adder circuit using Shannon's theorem and adder-based non-Restoring and Restoring Square Rooter circuits. The proposed adder and Square Rooter schematics were developed using DSCH2 CAD tool, and their layouts were generated with Microwind 3 VLSI CAD tool. The Square Rooter circuits were analysed using standard CMOS 65-nm features with a corresponding voltage of 0.7Â V. BSIM 4 was used to analyse the parameters. The proposed adder-based Square Rooter simulated results of the proposed adder with those of CPL, Static Energy Recovery Full (SERF), and CMOS adder cell-based Square Rooter circuits; the proposed adder-based Square Rooter circuit gives better results than the other adder-based Square Rooter circuits. We then compared the results with published results and observed that the proposed adder cell-based Square Rooter circuit dissipates lower power, responds faster, and has a higher EPI and higher throughput.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Hardware and Architecture
Authors
C. Senthilpari, Zuraida Irina Mohamad, S. Kavitha,