Article ID Journal Published Year Pages File Type
10365306 Microelectronics Journal 2013 10 Pages PDF
Abstract
This paper presents an efficient approach to statistical leakage analysis (SLA) that can estimate the arbitrary n-sigma leakage currents of the VLSI system for the probability density function (PDF) of a lognormal distribution. Unlike existing SLA approaches, the proposed method uses deterministic cell leakage models and gate-level deterministic leakage analysis, and thus, provides significantly reduced analysis complexity. Providing the n-sigma chip leakage current for the PDF of WM-based SLA with a computational complexity of O(N), where N is the number of cells in a chip, the proposed approach is a promising candidate for the analysis of recent technology (comprising billions of logic cells in a chip) to address the high-complexity of conventional approaches to SLA. Compared to conventional WM-based SLA, when the value of n was 5.1803, 3.6022, and 2.8191, the average absolute errors of n-sigma chip leakage current exhibited by the proposed approach were 5.08%, 4.73%, and 4.45%, respectively.
Related Topics
Physical Sciences and Engineering Computer Science Hardware and Architecture
Authors
, ,