Article ID Journal Published Year Pages File Type
10568170 Journal of Power Sources 2005 6 Pages PDF
Abstract
The multilayered cathodes of functionally graded microstructure for SOFCs were developed using a polymeric resin as a pore former at the nanometer scale. LSM-YSZ composite layer was placed on the interface between electrode/electrolyte as a reaction active layer, subsequently LSM as an intermediate layer and LSCF as a current collector were deposited by screen printing. The type of the LSM-YSZ composite powders used in the cell fabrication influenced the microstructure of the catalytic bottom layer. Furthermore, the addition of the polymeric resin to the particulate paste permits us to produce a nanoporous electrode of high porosity and surface area after thermal decomposition and crystallization. The electrochemical cell of such a microstructural feature showed a significantly improved electrocatalytic activity toward the oxygen reduction. Microstructural evolution and its electrochemical performance of the electrochemical cells with multilayered cathodes were investigated by SEM and impedance spectroscopy.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,