| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 10568209 | Journal of Power Sources | 2005 | 6 Pages |
Abstract
Optimal design and proper operation is important to get designed output power of a polymer electrolyte membrane fuel cell (PEMFC) stack. The air-cooling fuel cell stack is widely used in sub kW PEMFC systems. The purpose of this study is to analyze the operating conditions affecting the performance of an air-cooling PEMFC which is designed for portable applications. It is difficult to maintain well balanced operating conditions. These parameters are the relative humidity, the temperature of the stack, the utility ratio of the reactant gas and so on. In this study a 500Â W rate air-cooling PEMFC was fabricated and tested to evaluate the design performance and to determine optimal operating conditions. Moreover, basic modeling also is carried out. These results can be used as design criteria and optimal operating conditions for portable PEMFCs.
Related Topics
Physical Sciences and Engineering
Chemistry
Electrochemistry
Authors
Young-Jun Sohn, Gu-Gon Park, Tae-Hyun Yang, Young-Gi Yoon, Won-Yong Lee, Sung-Dae Yim, Chang-Soo Kim,
