Article ID Journal Published Year Pages File Type
10568263 Journal of Power Sources 2005 8 Pages PDF
Abstract
This paper investigates the use of a support vector machine (SVM) to estimate the state-of-charge (SOC) of a large-scale lithium-ion-polymer (LiP) battery pack. The SOC of a battery cannot be measured directly and must be estimated from measurable battery parameters such as current and voltage. The coulomb counting SOC estimator has been used in many applications but it has many drawbacks [S. Piller, M. Perrin, Methods for state-of-charge determination and their application, J. Power Sources 96 (2001) 113-120]. The proposed SVM based solution not only removes the drawbacks of the coulomb counting SOC estimator but also produces accurate SOC estimates, using industry standard US06 [V.H. Johnson, A.A. Pesaran, T. Sack, Temperature-dependent battery models for high-power lithium-ion batteries, in: Presented at the 17th Annual Electric Vehicle Symposium Montreal, Canada, October 15-18, 2000. The paper is downloadable at website http://www.nrel.gov/docs/fy01osti/28716.pdf] aggressive driving cycle test procedures. The proposed SOC estimator extracts support vectors from a battery operation history then uses only these support vectors to estimate SOC, resulting in minimal computation load and suitable for real-time embedded system applications.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, ,