| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 10568445 | Journal of Power Sources | 2005 | 15 Pages |
Abstract
The mathematical model equations, based on the principles of classical thermodynamics and chemical kinetics, were implemented into a computer program. The resulting software was employed to calculate the chemical species molar flow rates and the gas mixture stream temperature for the steady-state operation of the reformer. Typical computed results, such as the gas mixture temperature at the CPO reactor exit and the profiles of the fractional conversion of carbon monoxide, temperature, and mole fractions of the chemical species as a function of the catalyst weight in the HTWGS, LTWGS, and PROX reactors, are here presented at the carbon-to-oxygen atom ratio (C/O) of 1 for the feed mixture of n-decane (fuel) and dry air (oxidant).
Related Topics
Physical Sciences and Engineering
Chemistry
Electrochemistry
Authors
S.S. Sandhu, Y.A. Saif, J.P. Fellner,
