Article ID Journal Published Year Pages File Type
10587139 Bioorganic & Medicinal Chemistry Letters 2014 4 Pages PDF
Abstract
Treatment of 4-hydroxyquinolines with (2-methyl)allyl bromide in the presence of K2CO3 resulted in the formation of novel N-[(2-methyl)allyl]-4-quinolones through selective N-alkylation. Further reaction of N-(2-methylallyl)-4-quinolones with bromine or N-bromosuccinimide yielded the corresponding 3-bromo-1-(2,3-dibromo-2-methylpropyl)-4-quinolones and 3-bromo-1-(2-methylallyl)-4-quinolones, respectively. Furthermore, a copper-catalyzed C-N coupling of the latter 3-bromo-4-quinolones with (5-chloro)indole afforded novel 3-[(5-chloro)indol-1-yl]-4-quinolone hybrids. Antifungal and antiplasmodial assays of all new 4-quinolones were performed and revealed no antifungal properties but moderate antiplasmodial activities. All 15 compounds displayed micromolar activities against a chloroquine-sensitive strain of Plasmodium falciparum, and the five most potent compounds also showed micromolar activities against a chloroquine-resistant strain of P. falciparum with IC50-values ranging between 4 and 70 μM.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , , ,