Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10587961 | Bioorganic & Medicinal Chemistry Letters | 2013 | 5 Pages |
Abstract
The capabilities of 20 strains of fungi to transform acetyl-11-keto-β-boswellic (AKBA) were screened. And biotransformation of AKBA by Cunninghamella blakesleana AS 3.970 afforded five metabolites (1-5), while two metabolites (6, 7) were isolated from biotransformation of Cunninghamella elegans AS 3.1207. The chemical structures of these metabolites were identified by spectral methods including 2D NMR and their structures were elucidated as 7β-hydroxy-3-acety-11-keto-β-boswellic acid (1), 21β-dihydroxy-3-acety-11-keto-β-boswellic acid (2), 7β,22α-dihydroxy-3-acety-11-keto-β-boswellic acid (3), 7β,16α-dihydroxy-3-acety-11-keto-β-boswellic acid (4), 7β,15α-dihydroxy-3-acety-11-keto-β-boswellic acid (5); 7β,15α,21β-trihydroxy-3-acety-11-keto-β-boswellic acid (6) and 15α,21β-dihydroxy-3-acety-11-keto-β-boswellic acid (7). All these products are previously unknown. Their primary structure-activity relationships (SAR) of inhibition activity on LPS-induced NO production in RAW 264.7 macrophage cells were evaluated.
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Yan Sun, Dan Liu, RongGang Xi, Xiaobo Wang, Yan Wang, Jie Hou, Baojing Zhang, Changyuan Wang, Kexin Liu, Xiaochi Ma,