Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10592875 | Bioorganic & Medicinal Chemistry Letters | 2014 | 4 Pages |
Abstract
d-Amino acids can play important roles as specific biosynthetic building blocks required by organisms or act as regulatory molecules. Consequently, amino acid racemases that catalyze the formation of d-amino acids are potential therapeutic targets. Serine racemase catalyzes the reversible formation of d-serine (a modulator of neurotransmission) from l-serine, while proline racemase (an essential enzymatic and mitogenic protein in trypanosomes) catalyzes the reversible conversion of l-proline to d-proline. We show the substrate-product analogue α-(hydroxymethyl)serine is a modest, linear mixed-type inhibitor of serine racemase from Schizosaccharomyces pombe (Ki = 167 ± 21 mM, Kiâ²Â = 661 ± 81 mM, cf. Km = 19 ± 2 mM). The bicyclic substrate-product analogue of proline, 7-azabicyclo[2.2.1]heptan-7-ium-1-carboxylate is a weak inhibitor of proline racemase from Clostridium sticklandii, giving only 29% inhibition at 142.5 mM. However, the more flexible bicyclic substrate-product analogue tetrahydro-1H-pyrrolizine-7a(5H)-carboxylate is a noncompetitive inhibitor of proline racemase from C. sticklandii (Ki = 111 ± 15 mM, cf. Km = 5.7 ± 0.5 mM). These results suggest that substrate-product analogue inhibitors of racemases may only be effective when the active site is capacious and/or plastic, or when the inhibitor is sufficiently flexible.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Matthew Harty, Mitesh Nagar, Logan Atkinson, Christina M. LeGay, Darren J. Derksen, Stephen L. Bearne,