Article ID Journal Published Year Pages File Type
10592875 Bioorganic & Medicinal Chemistry Letters 2014 4 Pages PDF
Abstract
d-Amino acids can play important roles as specific biosynthetic building blocks required by organisms or act as regulatory molecules. Consequently, amino acid racemases that catalyze the formation of d-amino acids are potential therapeutic targets. Serine racemase catalyzes the reversible formation of d-serine (a modulator of neurotransmission) from l-serine, while proline racemase (an essential enzymatic and mitogenic protein in trypanosomes) catalyzes the reversible conversion of l-proline to d-proline. We show the substrate-product analogue α-(hydroxymethyl)serine is a modest, linear mixed-type inhibitor of serine racemase from Schizosaccharomyces pombe (Ki = 167 ± 21 mM, Ki′ = 661 ± 81 mM, cf. Km = 19 ± 2 mM). The bicyclic substrate-product analogue of proline, 7-azabicyclo[2.2.1]heptan-7-ium-1-carboxylate is a weak inhibitor of proline racemase from Clostridium sticklandii, giving only 29% inhibition at 142.5 mM. However, the more flexible bicyclic substrate-product analogue tetrahydro-1H-pyrrolizine-7a(5H)-carboxylate is a noncompetitive inhibitor of proline racemase from C. sticklandii (Ki = 111 ± 15 mM, cf. Km = 5.7 ± 0.5 mM). These results suggest that substrate-product analogue inhibitors of racemases may only be effective when the active site is capacious and/or plastic, or when the inhibitor is sufficiently flexible.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , ,