Article ID Journal Published Year Pages File Type
10594510 Bioorganic & Medicinal Chemistry Letters 2012 5 Pages PDF
Abstract
This report provides a synopsis of the esterase processing of short chain fatty acid (SCFA)-derivatized hexosamine analogs used in metabolic glycoengineering by demonstrating that the extracellular hydrolysis of these compounds is comparatively slow (e.g., with a t1/2 of ∼4 h to several days) in normal cell culture as well as in high serum concentrations intended to mimic in vivo conditions. Structure-activity relationship (SAR) analysis of common sugar analogs revealed that O-acetylated and N-azido ManNAc derivatives were more refractory against extracellular inactivation by FBS than their butanoylated counterparts consistent with in silico docking simulations of Ac4ManNAc and Bu4ManNAc to human carboxylesterase 1 (hCE1). By contrast, all analogs tested supported increased intracellular sialic acid production within 2 h establishing that esterase processing once the analogs are taken up by cells is not rate limiting.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , , , ,