Article ID Journal Published Year Pages File Type
10594853 Bioorganic & Medicinal Chemistry Letters 2014 10 Pages PDF
Abstract
Scaffold hopping from the thiazolopyridine ureas led to thiazolopyridone ureas with potent antitubercular activity acting through inhibition of DNA GyrB ATPase activity. Structural diversity was introduced, by extension of substituents from the thiazolopyridone N-4 position, to access hydrophobic interactions in the ribose pocket of the ATP binding region of GyrB. Further optimization of hydrogen bond interactions with arginines in site-2 of GyrB active site pocket led to potent inhibition of the enzyme (IC50 2 nM) along with potent cellular activity (MIC = 0.1 μM) against Mycobacterium tuberculosis (Mtb). Efficacy was demonstrated in an acute mouse model of tuberculosis on oral administration.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , , , , , , , , ,