Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10795343 | Biochimica et Biophysica Acta (BBA) - Bioenergetics | 2015 | 33 Pages |
Abstract
Energy transfer dynamics in dimeric photosystem II (PSII) complexes isolated from four diatoms, Chaetoceros gracilis, Cyclotella meneghiniana, Thalassiosira pseudonana, and Phaeodactylum tricornutum, are examined. Time-resolved fluorescence measurements were conducted in the range of 0-80Â ns. Delayed fluorescence spectra showed a clear difference between PSII monomer and PSII dimer isolated from the four diatoms. The difference can be interpreted as reflecting suppressed energy transfer between PSII monomers in the PSII dimer for efficient energy trapping at the reaction center. The observation was especially prominent in C. gracilis and T. pseudonana. The pathways seem to be suppressed under a low pH condition in isolated PSII complexes from C. gracilis, and excitation energy may be quenched with fucoxanthin chlorophyll a/c-binding protein (FCP) that was closely associated with PSII in C. gracilis. The energy transfer between PSII monomers in the PSII dimer may play a role in excitation energy regulation in diatoms.
Keywords
Related Topics
Life Sciences
Agricultural and Biological Sciences
Plant Science
Authors
Makio Yokono, Ryo Nagao, Tatsuya Tomo, Seiji Akimoto,