Article ID Journal Published Year Pages File Type
10795701 Biochimica et Biophysica Acta (BBA) - Bioenergetics 2014 10 Pages PDF
Abstract
We measured the kinetics of light-induced NADPH formation and subsequent dark consumption by monitoring in vivo its fluorescence in the cyanobacterium Synechocystis PCC 6803. Spectral data allowed the signal changes to be attributed to NAD(P)H and signal linearity vs the chlorophyll concentration was shown to be recoverable after appropriate correction. Parameters associated to reduction of NADP+ to NADPH by ferredoxin-NADP+-oxidoreductase were determined: After single excitation of photosystem I, half of the signal rise is observed in 8 ms; Evidence for a kinetic limitation which is attributed to an enzyme bottleneck is provided; After two closely separated saturating flashes eliciting two photosystem I turnovers in less than 2 ms, more than 50% of the cytoplasmic photoreductants (reduced ferredoxin and photosystem I acceptors) are diverted from NADPH formation by competing processes. Signal quantitation in absolute NADPH concentrations was performed by adding exogenous NADPH to the cell suspensions and by estimating the enhancement factor of in vivo fluorescence (between 2 and 4). The size of the visible (light-dependent) NADP (NADP+ + NADPH) pool was measured to be between 1.4 and 4 times the photosystem I concentration. A quantitative discrepancy is found between net oxygen evolution and NADPH consumption by the light-activated Calvin-Benson cycle. The present study shows that NADPH fluorescence is an efficient probe for studying in vivo the energetic metabolism of cyanobacteria which can be used for assessing multiple phenomena occurring over different time scales.
Related Topics
Life Sciences Agricultural and Biological Sciences Plant Science
Authors
, ,