Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10795756 | Biochimica et Biophysica Acta (BBA) - Bioenergetics | 2014 | 12 Pages |
Abstract
Active glycolysis and glutaminolysis provide bioenergetic stability of cancer cells in physiological conditions. Under hypoxia, metabolic and mitochondrial disorders, or pharmacological treatment, a deficit of key metabolic substrates may become life-threatening to cancer cells. We analysed the effects of mitochondrial uncoupling by FCCP on the respiration of cells fed by different combinations of Glc, Gal, Gln and Pyr. In cancer PC12 and HCT116 cells, a large increase in O2 consumption rate (OCR) upon uncoupling was only seen when Gln was combined with either Glc or Pyr. Inhibition of glutaminolysis with BPTES abolished this effect. Despite the key role of Gln, addition of FCCP inhibited respiration and induced apoptosis in cells supplied with Gln alone or Gal/Gln. For all substrate combinations, amplitude of respiratory responses to FCCP did not correlate with Akt, Erk and AMPK phosphorylation, cellular ATP, and resting OCR, mitochondrial Ca2Â + or membrane potential. However, we propose that proton motive force could modulate respiratory response to FCCP by regulating mitochondrial transport of Gln and Pyr, which decreases upon mitochondrial depolarisation. As a result, an increase in respiration upon uncoupling is abolished in cells, deprived of Gln or Pyr (Glc). Unlike PC12 or HCT116 cells, mouse embryonic fibroblasts were capable of generating pronounced response to FCCP when deprived of Gln, thus exhibiting lower dependence on glutaminolysis. Overall, the differential regulation of the respiratory response to FCCP by metabolic environment suggests that mitochondrial uncoupling has a potential for substrate-specific inhibition of cell function, and can be explored for selective cancer treatment.
Keywords
GLUTGlcΔpHTMRMPYRGSHOXPHOSOCRGLND-glucoseERKPMFMEFsΔΨmRPMIFCCPNGFPMPIAMPKMetabolic substrateDMEMFBSkidney-type glutaminaseECAGLS1tetramethyl rhodamine methyl esterIntracellular oxygenα-KGBPTESAMP-activated protein kinaseD-galactoseDMSODulbecco's modified Eagle's mediumROSα-ketoglutarateAktextracellular acidificationl-GlutamineMitochondrial respirationuncouplingGlucose transporterdimethyl sulphoxideelectron transport chainhorse serumfetal bovine serumCancer cellnerve growth factorinorganic phosphateOxidative phosphorylationRoswell Park Memorial Institutemouse embryonic fibroblastsOxygen consumption rateproton motive forceETcPlasma membrane potentialMitochondrial membrane potentialprotein kinase B (PKB)Mitogen-activated protein kinase (MAPK)Pyruvatecarbonyl cyanide 4-(trifluoromethoxy)phenylhydrazoneGalGluGlutathioneglutamateGlutaminolysisGlycolysisReactive oxygen species
Related Topics
Life Sciences
Agricultural and Biological Sciences
Plant Science
Authors
Alexander V. Zhdanov, Alicia H.C. Waters, Anna V. Golubeva, Ruslan I. Dmitriev, Dmitri B. Papkovsky,