Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10818891 | Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology | 2013 | 8 Pages |
Abstract
In birds, corticosterone (CORT) appears to facilitate reproductive activity because baseline and stress-induced CORT levels are elevated in breeding individuals compared with other times of the year. In particular, CORT is lower in the sex providing most of the parental care (i.e., incubation), which could be an important adaptation to tolerate stressors that result in abandoning reproduction. Therefore, one explanation for sex differences in CORT is that lower levels are favoured during the incubation/parental phase of reproduction. Using two species of uniparental shorebird - polyandrous red phalaropes (Phalaropus fulicarius) and polygynous white-rumped sandpipers (Calidris fuscicollis) - we predicted that the incubating sex would have lower baseline and stress-induced CORT, and incubating individuals with lower CORT would more effectively defend nests against a simulated intrusion, would return more quickly afterwards, and would ultimately have higher hatch success. We found that phalaropes followed the predicted pattern: incubating individuals (males) had lower baseline and stress-induced CORT than females but for baseline CORT these differences existed prior to males commencing incubation. Incubating male phalaropes with lower baseline and stress-induced CORT returned to incubate more quickly after a disturbance and there was non-significant tendency for baseline CORT to be lower in successful nests. In sandpipers, we observed no sex differences and no significant relationships between individual CORT levels and nest defence behaviours or hatch success. Our results demonstrate that in phalaropes at least, selection favours lower baseline and stress-induced CORT during the nesting period. These results can explain sex differences in stress-induced levels of CORT, however sex differences in baseline CORT were present prior to incubation.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Darryl B. Edwards, Eunice H. Chin, Gary Burness, H. Grant Gilchrist, Albrecht I. Schulte-Hostedde,