Article ID Journal Published Year Pages File Type
10819130 Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 2005 6 Pages PDF
Abstract
It is now widely accepted that, besides their well-established function in O2 transport, hemoglobin and myoglobin also undergo several redox reactions aimed to scavenge toxic free radicals and reactive oxygen and nitrogen species. At least some of these reactions are believed to play an important physiological role in the defense against oxidative stress. This aspect is exemplified by the recently discovered neuroglobin, a globin expressed in the brain. Rather than being considerably involved in reversible O2 binding, neuroglobin is likely to undergo redox reactions to protect neurons against oxidative and potentially pathogenic pathways, as those operating after episodes of tissue hypoxia or ischemia. A major part of the cellular damage occurring under such conditions has been ascribed to formation of peroxynitrite, that originates from the reaction between two biologically important free radicals, nitric oxide (NO˙) and superoxide. Here we review the current knowledge of the reactions of different forms of hemoglobin, myoglobin, and neuroglobin with peroxynitrite and discuss their physiological role on the basis of measured rate constants and on the probability of occurrence of these reactions in vivo.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, ,