Article ID Journal Published Year Pages File Type
10847163 Soil Biology and Biochemistry 2005 9 Pages PDF
Abstract
The C:N ratio and the residence time of C in the fractions decreased with particle size. The presence of a grass rhizosphere increased the decay rate of old C. Accumulation of new C in particle size fractions increased with species competitiveness and with N supply. Species competitiveness increased C turnover in the aggregated fraction, as a result of greater accumulation of new C and faster decay of old C. Fertiliser N increased N turnover and C mineralisation in the SOM. Species competitiveness decreased soil NO3−-N exchanged with the IER and increased dissolved organic C (DOC) content. The nature of the current rhizosphere is thus an important factor driving C and N transformations of the old root litter, in relation with grass species strategy. Plant competitiveness may stimulate the C and N turnover in the more evolved SOM fractions in a similar way to the mineral N supply.
Related Topics
Life Sciences Agricultural and Biological Sciences Soil Science
Authors
, , ,