Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10871807 | FEBS Letters | 2012 | 10 Pages |
Abstract
Physical electrochemistry has undergone a remarkable evolution over the last few decades, integrating advanced techniques and theory from solid state and surface physics. Single-crystal electrode surfaces have been a core notion, opening for scanning tunnelling microscopy directly in aqueous electrolyte (in situ STM). Interfacial electrochemistry of metalloproteins is presently going through a similar transition. Electrochemical surfaces with thiol-based promoter molecular monolayers (SAMs) as biomolecular electrochemical environments and the biomolecules themselves have been mapped with unprecedented resolution, opening a new area of single-molecule bioelectrochemistry. We consider first in situ STM of small redox molecules, followed by in situ STM of thiol-based SAMs as molecular views of bioelectrochemical environments. We then address electron transfer metalloproteins, and multi-centre metalloenzymes including applied single-biomolecular perspectives based on metalloprotein/metallic nanoparticle hybrids.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Plant Science
Authors
Jingdong Zhang, Qijin Chi, Allan G. Hansen, Palle S. Jensen, Princia Salvatore, Jens Ulstrup,