Article ID Journal Published Year Pages File Type
10871858 FEBS Letters 2011 6 Pages PDF
Abstract
Myocardial ischemia damages the electron transport chain and augments cardiomyocyte death during reperfusion. To understand the relationship between ischemic mitochondrial damage and mitochondrial-driven cell death, the isolated perfused heart underwent global stop-flow ischemia with and without mitochondrial protection by reversible blockade of electron transport. Ischemic damage to electron transport depleted bcl-2 content and favored mitochondrial permeability transition (MPT). Reversible blockade of electron transport preserved bcl-2 content and attenuated calcium-stimulated mitochondrial swelling. Thus, the damaged electron transport chain leads to bcl-2 depletion and MPT opening. Chemical inhibition of bcl-2 with HA14-1 also dramatically increased mitochondrial swelling, augmented by exogenous H2O2 stress, indicating that bcl-2 depleted mitochondria are poised to undergo MPT during the enhanced oxidative stress of reperfusion.
Related Topics
Life Sciences Agricultural and Biological Sciences Plant Science
Authors
, ,