Article ID Journal Published Year Pages File Type
10872533 FEBS Letters 2008 5 Pages PDF
Abstract
The pathogenesis of human Menkes and Wilson diseases depends on alterations in copper transport. Some reports suggest that intracellular traffic of copper might be regulated by kinase-mediated phosphorylation. However, there is no evidence showing the influence of kinase-related processes in coupled ATP hydrolysis/copper transport cycles. Here, we show that cyclic AMP-dependent protein kinase (PKA) regulates Ccc2p, the yeast Cu(I)-ATPase, with PKA-mediated phosphorylation of a conserved serine (Ser258) being crucial for catalysis. Long-range intramolecular communication between Ser258 and Asp627 (at the catalytic site) modulates the key pumping event: the conversion of the high-energy to the low-energy phosphorylated intermediate associated with copper release.
Related Topics
Life Sciences Agricultural and Biological Sciences Plant Science
Authors
, , , , , ,