Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10873409 | FEBS Letters | 2005 | 9 Pages |
Abstract
The transition metal Zn is essential for many physiological processes in plants, yet at elevated concentrations this, and the related non-essential metal Cd, can be toxic. Arabidopsis thaliana HMA4, belonging to the Type P1B subfamily of P-type ATPases, has recently been implicated in Zn nutrition, having a role in root to shoot Zn translocation. Using Arabidopsis insertional mutants, it is shown here that disruption of AtHMA4 function also results in increased sensitivity to elevated levels of Cd and Zn, suggesting that AtHMA4 serves an important role in metal detoxification at higher metal concentrations. AtHMA4 and a truncated form lacking the last 457 amino acids both confer Cd and Zn resistance to yeast but a mutant version of the full-length AtHMA4 (AtHMA4-C357G) does not; this demonstrates that the C-terminal region is not essential for this function. Evidence is presented that AtHMA4 functions as an efflux pump.
Keywords
Related Topics
Life Sciences
Agricultural and Biological Sciences
Plant Science
Authors
Rebecca F. Mills, Alessandra Francini, Pedro S.C. Ferreira da Rocha, Paul J. Baccarini, Melissa Aylett, Gerard C. Krijger, Lorraine E. Williams,