Article ID Journal Published Year Pages File Type
10879809 Systematic and Applied Microbiology 2014 10 Pages PDF
Abstract
The use of nanoSIMS for the exploration of microbial activities in natural habitats often implies that stable isotope tracer experiments are combined with in situ hybridization techniques (i.e. fluorescence in situ hybridization (FISH) or catalyzed reporter deposition (CARD)-FISH). In this study, Pseudomonas putida grown on 13C- and 15N-labeled carbon and nitrogen, collected in exponential growth and stationary phases, was hybridized and analyzed by nanoSIMS. It was shown that 13C and 15N fractions decreased after FISH and CARD-FISH in comparison to chemically untreated cells. However, the fractions were influenced differently by various treatments. After paraformaldehyde fixation of exponentially growing cells, a reduction of the 13C and 15N fractions was measured from 94 ± 1.2% and 89.5 ± 3.8% to 90.2 ± 0.8% and 64 ± 4.6%, respectively, indicating that nitrogen isotopic composition was most influenced. A further decrease of the 13C and 15N fractions to 80.7 ± 6.5 and 59.5 ± 4.1%, respectively, was measured after FISH, while CARD-FISH decreased the fractions to 57.4 ± 3.0% and 47.1 ± 4.1%, respectively. The analysis of cells collected in different growth phases revealed that the effect of various treatments seemed to be dependent on the cell's physiological state. In addition, a mathematical model that can be used in further studies was developed in order to calculate the amount of carbon introduced into the cells by chemical treatments. These results can be valuable for environmental FISH-nanoSIMS studies where the isotopic composition of single cells will be used to quantitatively assess the importance of specific populations to certain biochemical processes and determine budget estimations.
Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , , , ,