Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10891778 | Theriogenology | 2015 | 7 Pages |
Abstract
The aim of our present study was to examine the effects of insulinlike growth factor 1 (IGF-1) on yak sperm motility during in vitro capacitation and the relationship between the effects of IGF-1 on yak sperm motility and apoptosis was evaluated. Frozen-thawed yak spermatozoa were incubated at 38 °C for 1 hour in Tyrode's bicarbonate-buffered medium for sperm culture (Sp-TALP) with different concentrations (0, 50, 100, and 200 ng/mL) of IGF-1. In every treatment, the sperm motility was measured by a computer-assisted sperm analyzer system. The fertilizing ability of spermatozoa was evaluated on the basis of oocyte cleavage rate after insemination. The expression of Bax and Bcl-2 was examined by real-time polymerase chain reaction and Western blot for the messenger RNA and protein levels. It is interesting to note that IGF-1 improved yak spermatozoa motility and the cleavage rate of oocytes; these improvements were highest in the 100 ng/mL IGF-1 group, followed by the 200 ng/mL and 50 ng/mL groups, with the lowest improvements in motility and cleavage rates in groups without IGF-1. The expression level of Bax was downregulated by IGF-1, whereas Bcl-2 was upregulated. Both messenger RNA and Bax proteins were lowest in groups with 100 ng/mL IGF-1, where the Bcl-2 was the highest. Bax expression in the groups with IGF-1 was lower than that in the group without IGF-1, and Bcl-2 expression was higher in groups with IGF-1 than that in the group without IGF-1. In conclusion, this research reports that improvements in yak spermatozoa motility and the oocyte cleavage rate after the addition of IGF-I may be a result of the reduction of spermatozoa apoptosis rates by modulating the expression of Bax and Bcl-2.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Animal Science and Zoology
Authors
Yangyang Pan, Yan Cui, Abdul Rasheed Baloch, Jiangfeng Fan, Junfeng He, Guyue Li, Hongfei Zheng, Yifu Zhang, Peng Lv, Sijiu Yu,