Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10892164 | Theriogenology | 2013 | 9 Pages |
Abstract
The Wnt/β-catenin signaling pathway plays essential roles in the regulation of cell fate and polarity during embryonic development of many animal species. This study investigated the possible involvement of Wnt/β-catenin signaling pathway during hatching and trophectoderm (TE) development in pig blastocysts. Results showed that β-catenin and DVL3, the key mediators of Wnt/β-catenin signaling, disappeared from the nucleus after blastocyst hatching. Specific inhibition of Wnt/β-catenin signaling pathway, by Dickkopf-1, increased the rate of blastocyst hatching, total nuclear number per blastocyst, and reduced the ratio of inner cell mass (ICM):TE (P < 0.05). In contrast, specific activation of the Wnt/β-catenin signaling pathway, by lithium chloride, reduced the rate of blastocyst hatching, total nuclear number per blastocyst, and increased the ratio of ICM:TE (P < 0.05). The change in the ICM:TE ratio was associated with the change in the number of TE cells but not the ICM cells. Activation or inhibition of Wnt/β-catenin signaling and β-catenin nuclear accumulation, by lithium chloride or Dickkopf-1, also altered the expression of CDX2. These data therefore, suggest the possible involvement of Wnt/β-catenin signaling in regulating hatching and TE fate during the development of pig blastocyst.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Animal Science and Zoology
Authors
Kyung Tae Lim, Mukesh Kumar Gupta, Sung Ho Lee, Yoon Hee Jung, Dong Wook Han, Hoon Taek Lee,