Article ID Journal Published Year Pages File Type
10892383 Theriogenology 2012 11 Pages PDF
Abstract
The vascular endothelial growth factor (VEGF) has beneficial effects on ovine oocytes during in vitro maturation and their subsequent early embryonic development, but the biochemical pathway underlying this effect has not been elucidated. Therefore, the focus of the present study was to investigate the activation of the mitogen-activated protein kinase (MAPK) pathway in response to the addition of VEGF to the maturation medium, and to study the subcellular localization of VEGF and its receptors during ovine oocyte maturation. We concluded that: (1) VEGF mainly localized in the cytoplasm, whereas its receptors, fms-tyrosine kinase-1 and kinase domain region (KDR), were localized on the plasma membrane of oocytes; (2) the addition of 5 ng/mL VEGF increased the percentage of oocytes with extruded first polar bodies (50.9 ± 2.2% vs. 34.6 ± 2.9%; treatment vs. control, respectively; P < 0.01) and the rate of oocytes competent to undergo nuclear maturation (70.6 ± 0.9% vs. 62.9 ± 1.9%, P < 0.01); and (3) as the expression of VEGF, fms-tyrosine kinase-1, and KDR increased after supplementation with 5 ng/mL, expression of VEGF, mitogen-activated protein kinase kinase (MEK), and MAPK mRNA, as well as MAPK phosphorylation, were stimulated in a time-dependent manner. We inferred that, in a paracrine manner, exogenous VEGF bound to KDR, its main receptor, and then activated the MAPK signaling pathway, which promoted maturation of ovine oocytes. However, the VEGF system also had an autocrine regulatory loop that contributed to creating an environment optimal for oocyte maturation.
Related Topics
Life Sciences Agricultural and Biological Sciences Animal Science and Zoology
Authors
, , , , ,