Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10892828 | Theriogenology | 2012 | 10 Pages |
Abstract
Hourly blood sampling in both horses and cattle indicate that the transition between the end of preluteolysis and the beginning of luteolysis occurs within 1 h, as manifested by a change in progesterone concentrations. Each species presents a separate temporality enigma on the relationship between pulses of a prostaglandin (PG) F2α metabolite (PGFM) and the hour of the progesterone transition. In horses, relatively small pulses of PGFM occur during preluteolysis (before transition) and at transition. Oxytocin, but not estradiol, increases and decreases concomitantly with the small PGFM pulse at transition but not with previous pulses and may account for the initiation of luteolysis during the small PGFM pulse. In cattle, the last PGFM pulse of preluteolysis occurs hours before transition (e.g., 4 h), and the next pulse occurs well after transition (e.g., 9 h); unlike in horses, a PGFM pulse does not occur at transition. During the last PGFM pulse before transition, progesterone concentration decreases during the ascending portion of the PGFM pulse. Concentration then rebounds in synchrony with an LH pulse. The rebound returns progesterone to the concentration before the PGFM pulse. During luteolysis, an LH-stimulated progesterone rebound may occur after the peak of a PGFM pulse, but progesterone does not return to the concentration before the PGFM pulse. A similar LH-stimulated progesterone rebound does not occur in horses, and therefore progesterone fluctuations are more shallow in horses than in cattle.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Animal Science and Zoology
Authors
O.J. Ginther, M.A. Beg,