Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10893223 | Theriogenology | 2006 | 8 Pages |
Abstract
Previous studies indicate that sex-sorted sperm exhibit different physiology, including fertilizing capacity, from non-sorted sperm. However, differences between X- and Y-bearing sperm in their ability to undergo an acrosome reaction have never been investigated. This study determined the ability of non-sorted and sex-sorted sperm to undergo the acrosome reaction prior to and after cryopreservation. Sperm were treated with dilauroylphosphatidylcholine (PC12) to induce the acrosome reaction and the percentages of live-acrosome-reacted sperm and dead sperm were evaluated. The X- and Y-bearing sperm reacted similarly to the PC12 treatment, regardless of whether sperm were assessed prior to or after cryopreservation. Fresh control sperm exhibited lower percentages of live sperm (60%) than either X- or Y- sorted sperm (69-74%, P < 0.05). Percentages of live control sperm were also lower after thawing (29-35%) than sex-sorted sperm (55-58%, P < 0.05). Control and sex-sorted fresh sperm responded similarly to PC12 treatment. However, sex-sorted cryopreserved sperm exhibited higher percentages of live-acrosome-reacted sperm (23%) than control sperm (9%, P < 0.05) after 40 min without PC12 treatment. In addition, cryopreserved control sperm treated with 79 μM PC12 exhibited higher percentages of live-acrosome-reacted sperm than sex-sorted sperm. In conclusion, X- and Y-bearing sperm responded similarly to PC12 treatment. In addition, fresh sexed and non-sorted sperm responded similarly to PC12 treatment. However, cryopreserved sex-sorted sperm underwent an acrosome reaction more rapidly in the absence of PC12 (over a 40 min period) than the non-sorted sperm. Therefore, sex-sorting induced changes in sperm membranes that accelerated the acrosome reaction process in sperm after cryopreservation.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Animal Science and Zoology
Authors
Eva Mocé, James K. Graham, John L. Schenk,