Article ID Journal Published Year Pages File Type
10894554 Theriogenology 2011 11 Pages PDF
Abstract
Studies concerning oocyte quality markers, oocyte/embryo metabolism or commercial OPU settings treating donors with low oocyte yields, indicate a need for optimization of IVP protocols to culture single oocytes to the blastocyst stage. However, culture conditions for single oocyte usually impair development, although previous research showed that single oocyte culture on a monolayer of cumulus cells can lead to similar developmental competence than group oocyte culture. Aiming to develop a fully single IVP procedure, Experiment 1 and 2 revealed that individual maturation, fertilization and culture in 20 μL droplets, using a monolayer of heterologous (SSSm, Exp 1) or autologous cumulus cells in coculture (SSSa, Exp 2), resulted in 23.9% and 15.1% of blastocysts 8 days p.i., respectively, which is significantly less compared to regular group IVP (GGGc, 33.5% (Exp 1) and 26.2% (Exp 2), respectively). In a third Experiment, day 7 p.i. blastocyst quality was analyzed in four treatment groups: regular group IVP (GGGc), group IVP with coculture (GGGm), in group produced zygotes, singly cultured on a heterologous cumulus cell monolayer (GGSm) and individually matured and fertilized zygotes, singly cultured on a monolayer (SSSm). Mean cell number and apoptotic cell index, were similar for all treatment groups. Moreover, mRNA abundance relative to H2AFZ was equal for 9 qualitatively linked genes (TP53, BAX, SHC1 SHC, IGF2R, PTGS2, AKR1B1, PLAC8, SLC2A1, and MNSOD). Only GPX1, involved in detoxification and mtDNA protection to oxidative stress, was significantly downregulated (ANOVA, P < 0.05) in singly produced blastocysts (SSSm), compared to the other treatments. In conclusion, a valuable individual IVP system was established and autologous cumulus cells in coculture showed to partly neutralize hampered individual culture conditions. Additionally, to our knowledge this is the first report in which blastocyst quality, in terms of cell number, apoptosis and gene expression, of singly produced embryos was investigated and shown to be similar to in group produced embryos, implicating that the single IVP system can be applied as a tool in oocyte and embryo quality studies.
Related Topics
Life Sciences Agricultural and Biological Sciences Animal Science and Zoology
Authors
, , , , , , ,