Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10927613 | Cryobiology | 2016 | 7 Pages |
Abstract
Cold storage of two-cell embryos at refrigerated temperatures is a useful means to ship genetically engineered mice. We previously reported that M2 medium maintained the developmental ability of two-cell embryos for 48 h at 4 °C, and offspring were obtained from embryos transported by a courier service under refrigerated temperatures. The limitation of 48 h practically restricts the shipping destination of the embryos. To enhance the applicability of the cold-storage technique, prolonging the time to maintain developmental ability of the embryos is required. Oxidative stress may be a cause of the declining developmental ability of cold-stored embryos. However, the effect of oxidative stress on developmental ability of embryos has not been investigated. We examined intracellular glutathione (GSH) levels of cold-stored two-cell embryos to evaluate the effect of oxidative and investigated the efficacy of adding N-acetyl cysteine (NAC) to the preservation medium on the developmental ability of cold-stored embryos and transported two-cell embryos at refrigerated temperatures. Intracellular GSH levels of two-cell embryos decreased by cold storage for longer than 72 h, whereas NAC recovered this reduction and improved the developmental ability of embryos cold-stored for 96 h. In the transport experiment, the developmental rate of transported two-cell embryos to offspring was increased by adding NAC to the preservation medium. We found that NAC prolonged the storage period of two-cell embryos and maintained the developmental ability by alleviating the reduction of intracellular GSH. These findings will improve the technique of cold-storage of two-cell embryos to facilitate efficient transport of genetically engineered mice worldwide.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Agricultural and Biological Sciences (General)
Authors
Yuka Horikoshi, Toru Takeo, Naomi Nakagata,