Article ID Journal Published Year Pages File Type
10973650 Journal of Dairy Science 2016 10 Pages PDF
Abstract
Calcium, Mg, P, and K are of great importance for the health and productivity of dairy cows after calving. So far genetic studies have focused on clinical hypocalcemia, leaving the genetic parameters of these macroelements unstudied. Our objective was to estimate the genetic parameters of Ca, Mg, P, and K serum concentrations and their changes during the first 8 d after calving. The study was conducted in 9 herds located in northern Greece, with 1,021 Holstein cows enrolled from November 2010 until November 2012. No herd used any kind of preventive measures for hypocalcemia. Pedigree information for all cows was available. A total of 35 cows were diagnosed and treated for periparturient paresis and, therefore, excluded from the study. The remaining 986 cows were included in genetic analysis. The distribution of cows across parities was 459 (parity 1), 234 (parity 2), 158 (parity 3), and 135 (parity ≥4). A sample of blood was taken from each cow on d 1, 2, 4, and 8 after calving and serum concentrations of Ca, P, Mg, and K were measured in each sample. A final data set of 15,390 biochemical records was created consisting of 3,903 Ca, 3,902 P, 3,903 Mg, and 3,682 K measurements. Moreover, changes of these concentrations between d 1 and 4 as well as 1 and 8 after calving were calculated and treated as different traits. Random regression models were used to analyze the data. Results showed that daily heritabilities of Ca, P, and Mg concentrations traits were moderate to high (0.20-0.43), whereas those of K were low to moderate (0.12-0.23). Regarding concentration changes, only Mg change between d 1 and 8 after calving had a significant heritability of 0.18. Genetic correlations between Ca, P, Mg, and K concentrations and their concentration changes from d 1 to 4 and 1 to 8 after calving were not significantly different from zero. Most phenotypic correlations among Ca, P, Mg, and K concentrations were positive and low (0.09-0.16), whereas the correlation between P and Mg was negative and low (−0.16). Phenotypic correlations among macromineral concentrations on d 1 and their changes from d 1 to 4 and 1 to 8 after calving varied for each macromineral. This study revealed that genetic selection for normal Ca, P, Mg, and K concentrations in the first week of lactation is possible and could facilitate the management of their deficiencies during the early stages of lactation.
Related Topics
Life Sciences Agricultural and Biological Sciences Animal Science and Zoology
Authors
, , , , , ,