Article ID Journal Published Year Pages File Type
10973797 Journal of Dairy Science 2016 10 Pages PDF
Abstract
Research has shown that changes in nutrition both before and after weaning can affect mammary development. Additionally, estrogen is known to be a potent mammogenic stimulant. Our objectives were to determine effects of altered preweaning feeding and exogenous estradiol postweaning on growth, intake, and health. Thirty-six Holstein heifer calves were reared on (1) a restricted milk replacer (MR) diet fed at 0.44 kg powder dry matter (DM)/day [R; 20.9% crude protein (CP), 19.8% fat, DM basis], or (2) an enhanced MR fed at 1.08 kg powder DM/d (EH; 28.9% CP, 26.2% fat, DM basis). The MR feeding was reduced 50% during wk 8 to prepare for weaning. Starter was offered after wk 4 but balanced between treatments. Body weight and frame were measured weekly with intakes and health monitored daily. At weaning, a subset of calves were slaughtered (n = 6/diet). Enhanced-fed calves had greater carcass, thymus, liver, spleen, and mammary gland (parenchyma and mammary fat pad) weights. The EH calves also had greater average daily gain (ADG) starting during wk 1 (0.36 vs. −0.06 kg/d) and lasting through wk 7 (1.00 vs. 0.41 kg/d). Remaining calves received estrogen implants or placebo and were slaughtered at the end of wk 10, creating 4 treatments: (1) R, (2) R + estrogen (R-E2), (3) EH, and (4) EH + estrogen (EH-E2). Postweaning ADG was similar between R, EH, and EH-E2 calves, but greater in R-E2 calves than E calves. The EH-E2 calves had the heaviest mammary glands, and R-E2 calves had heavier mammary glands than R calves. The EH calves consumed more MR DM, CP, and fat preweaning. The R-fed calves consumed more starter DM preweaning. Fecal score was greater for EH calves (1.74 vs. 1.50) preweaning, but days medicated did not differ. Fecal scores were lower for R-E2 calves postweaning. Improved preweaning feeding of calves increased body weights and frame measures. Differences in body weights remained postweaning. Enhanced-fed calves showed greater ADG during the preweaning period but not postweaning. Exogenous estrogen may elicit diet-dependent growth responses. Analysis of collected samples will allow determination of cellular and molecular processes responsible for the marked differences in mammary development observed.
Related Topics
Life Sciences Agricultural and Biological Sciences Animal Science and Zoology
Authors
, , , ,