Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
11012486 | Neurocomputing | 2018 | 18 Pages |
Abstract
Subspace segmentation is to group a given set of n data points into multiple clusters, with each cluster corresponding to a subspace. Prevalent methods such as Sparse Subspace Clustering (SSC) and Low-Rank Representation (LRR) are effective in terms of segmentation accuracy, but computationally inefficient while applying to gigantic datasets where n is very large as they possess a complexity of O(n3). In this paper, we propose an iterative method called Random Sample Probing (RANSP). In each iteration, RANSP finds the members of one subspace by randomly choosing a data point (called “seed”) at first, and then using Ridge Regression (RR) to retrieve the other points that belong to the same subspace as the seed. Such a procedure is repeated until all points have been classified. RANSP has a computational complexity of O(n) and can therefore handle large-scale datasets. Experiments on synthetic and real datasets confirm the effectiveness and efficiency of RANSP.
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Yang Li, Yubao Sun, Qingshan Liu, Shengyong Chen,