Article ID Journal Published Year Pages File Type
11017732 Journal of Theoretical Biology 2018 23 Pages PDF
Abstract
We consider a dynamic framework frequently used to model gene regulatory and signal transduction networks: monotonic ODEs that are composed of Hill functions. We derive conditions under which activity or inactivity in one system variable induces and sustains activity or inactivity in another. Cycles of such influences correspond to positive feedback loops that are self-sustaining and control-robust, in the sense that these feedback loops “trap” the system in a region of state space from which it cannot exit, even if the other system variables are externally controlled. To demonstrate the utility of this result, we consider prototypical examples of bistability and hysteresis in gene regulatory networks, and analyze a T-cell signal transduction ODE model from the literature.
Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, ,