Article ID Journal Published Year Pages File Type
11031600 Applied Soft Computing 2018 8 Pages PDF
Abstract
Unsupervised classification is a crucial step in remote sensing hyperspectral image analysis where producing labeled data is a laborious task. Spectral Clustering is an appealing graph-partitioning technique with outstanding performance on data with non-linear dependencies. However, Spectral Clustering is restricted to small-scale data and neither has been effectively applied to hyperspectral image analysis. In this paper, the unsupervised classification of hyperspectral images is addressed through a sequential spectral clustering that can be extended to the large-scale hyperspectral image. To this end, this paper utilizes a bipartite graph representation along with a sequential singular value decomposition and mini-batch K-means for unsupervised classification of hyperspectral imagery. We evaluate the proposed algorithm with several benchmark hyperspectral datasets including Botswana, Salinas, Indian Pines, Pavia Center Scene and Pavia University Scene. The experimental results show significant improvements made by the proposed algorithm compared to the state-of-art clustering algorithms.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,