Article ID Journal Published Year Pages File Type
11032447 Signal Processing 2019 10 Pages PDF
Abstract
In this paper, a generalized fractional central difference Kalman filter for nonlinear discrete fractional dynamic systems is proposed. Based on the Stirling interpolation formula, the presented algorithm can be implemented as no derivatives are needed. Besides, in order to estimate the state with unknown prior information, a maximum a posteriori principle based adaptive fractional central difference Kalman filter is derived. The adaptive algorithm can estimate the noise statistics and system state simultaneously. The unbiasedness of the proposed algorithm is analyzed. Several numerical examples demonstrate the accuracy and effectiveness of the two Kalman filters.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , , , ,