Article ID Journal Published Year Pages File Type
1146548 Journal of Multivariate Analysis 2010 20 Pages PDF
Abstract
Stochastic modeling for large-scale datasets usually involves a varying-dimensional model space. This paper investigates the asymptotic properties, when the number of parameters grows with the available sample size, of the minimum-BD estimators and classifiers under a broad and important class of Bregman divergence (BD), which encompasses nearly all of the commonly used loss functions in the regression analysis, classification procedures and machine learning literature. Unlike the maximum likelihood estimators which require the joint likelihood of observations, the minimum-BD estimators are useful for a range of models where the joint likelihood is unavailable or incomplete. Statistical inference tools developed for the class of large dimensional minimum-BD estimators and related classifiers are evaluated via simulation studies, and are illustrated by analysis of a real dataset.
Related Topics
Physical Sciences and Engineering Mathematics Numerical Analysis
Authors
,